

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Smooth 2 Inch Thick Space Absorbers
9 Units Arranged in a Three by Three Pattern
Each Unit Spaced 6 Inches From Adjacent Unit
Each Unit Mounted With D-40 Spacers on the Backside

C 4016026

Assignment Number: G-1276

Test Date: 06/27/2016

Report Approval Date: 08/15/2016

Submitted by:

Andrew E. Heuer Senior Test Engineer

Reviewed by: _____ Robert J Menchetti

Director

NGC 4016026 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date : 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016026

Page 3 of 5

Report Number:

NGC 4016026

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Smooth 2" Thick Foam Units

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: White Foam; Smooth

Panel Core: White Foam

Back Finish: White Foam with four D-40 Spacers attached

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 51.82 mm (2.04 in.), 0.98 kg/m² (0.20 PSF)

Unit Size: Nine Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

Mounting:

9 Units spaced 6 Inches apart in a 3 x 3 arrangement with four D-40 Spacers on backside of

each unit, perimeter of units not sealed.

Total Sample Size:

36 Sq. Ft. (3.369 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016026

Date of test:

6/27/2016

Temp. [°C]:

22.0

Humidity [%]: 51

Spec. Size [m²]: 3.369

The state of the s	Absorption	Avg. De	ecay Rate
	Metric Sabins	Empty	Specimen
Frequency	per Unit	d (empty)	d (specimen)
[Hz]		[dB/s]	[dB/s]
100	0.01	9.17	9.26
125	0.04	9.52	10.02
160	0.11	7.90	9.24
200	0.12	8.14	9.55
250	0.23	8.12	10.80
315	0.34	7.18	11.21
400	0.46	6.86	12.29
500	0.55	6.95	13.49
630	0.60	6.65	13.81
800	0.59	6.45	13.48
1000	0.58	6.82	13.77
1250	0.55	7.18	13.71
1600	0.53	7.37	13.66
2000	0.54	8.01	14.40
2500	0.56	7.97	14.61
3150	0.54	7.08	13.56
4000	0.54	5,56	12.04
5000	0.56	3.20	9.86

Reverberation Room Volume:

282.1

m^a

Estimates of repeatability and reproducibility for sound absorption of a specimen are referenced in ASTM C423 - 09a test method.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

Test report:

NGC4016026

Date of test:

6/27/2016

Room Vol.[m³]: 282.1

Spec. Size [m²]: 3.369

Temp. [°C]:

22.0

Humidity [%]:

51

Frequency [Hz]	Absorption Metric Sabins per unit
100	0.01
125	0.04
160	0.11
200	0.12
250	0.23
315	0.34
400	0.46
500	0.55
630	0.60
800	0.59
1000	0.58
1250	0.55
1600	0.53
2000	0.54
2500	0.56
3150	0.54
4000	0.54
5000	0.56

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Smooth 1-1/2 Inch Thick Space Absorbers 9 Units Arranged in a Three by Three Pattern Each Unit Spaced 6 Inches From Adjacent Unit Each Unit Mounted With D-40 Spacers on the Backside

Report Number:	NGC 4016038
Assignment Number:	G-1276
Test Date:	07/28/2016
Report Approval Date: Submitted by:	08/15/2016 Qd EH
Andrew Senior 7 Review	J Menchetti

NGC 4016038 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date: 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016038

Page 3 of 5

Report Number:

NGC 4016038

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Smooth 1" Thick Foam Units

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: White Foam; Smooth

Panel Core: White Foam

Back Finish: White Foam with four D-40 Spacers attached

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 38.86 mm (1.53 in.), 0.78 kg/m² (0.16 PSF)

Unit Size: Nine Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

Mounting:

9 Units spaced 6 Inches apart in a 3 x 3 arrangement with four D-40 Spacers on backside of

each unit, perimeter of units not sealed.

Total Sample Size:

36 Sq. Ft. (3.369 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No.of test report:

NGC4016038

Date of test:

7/28/2016

Temp. [°C]:

23.0

Humidity [%]: 50

Spec. Size [m2]: 3.369

	Absorption	Avg. De	ecay Rate	
Frequency [Hz]	Metric Sabins per unit	Empty d (empty) [dB/s]	Specimen d (specimen) [dB/s]	
100	0.09	8.97	10.03	
125	0.04	9.43	9.94	
160	0.09	7.62	8.75	
200	0.11	7.75	9.03	
250	0.16	8.22	10.07	
315	0.25	7.28	10.23	
400	0.33	6.94	10.87	
500	0.43	6.93	12.06	
630	0.50	6.47	12.49	
800	0.53	6.26	12.64	
1000	0.54	6.77	13.24	
1250	0.52	7.13	13.37	
1600	0.50	7.67	13.62	
2000	0.47	8.66	14.28	
2500	0.49	9.12	14.99	
3150	0.51	9.10	15.16	
4000	0.51	8.97	15.06	
5000	0,51	8.70	14.80	

Reverberation Room Volume:

282.1

Estimates of repeatability and reproducibility for sound absorption of a specimen are referenced in ASTM C423 - 09a test method.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

Test report: NGC4016038 Date of test: 7/28/2016 Spec. Size [m²]: 3.369

Room Vol.[m³]: 282.1 Temp. [°C]: 23.0 Humidity [%]: 50

Frequency	Absorption Metric Sabins
[Hz]	per unit
100	0.09
125	0.04
160	0.09
200	0.11
250	0.16
315	0.25
400	0.33
500	0.43
630	0.50
800	0.53
1000	0.54
1250	0.52
1600	0.50
2000	0.47
2500	0.49
3150	0.51
4000	0.51
5000	0.51

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Smooth 1 Inch Thick Space Absorbers 9 Units Arranged in a Three by Three Pattern Each Unit Spaced 6 Inches From Adjacent Unit Each Unit Mounted With D-40 Spacers on the Backside

Report	Number:
KEDUL	muniber.

NGC 4016037

Assignment Number:

G-1276

Test Date:

07/28/2016

Report Approval Date: 08/15/2016

Submitted by:

Andrew E. Heuer

Senior Test Engineer

Reviewed by: Robert J Menchetti

Director

The results reported above apply to specific samples submitted for measurement. No responsibility is assumed for performance of any other specimen. The laboratory's accreditation or any of its test reports in no way constitute or imply product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government. This report may not be reproduced except in full, without written approval of the laboratory.

> 1650 Military Road • Buffalo, NY 14217-1198 (716) 873-9750 • Fax (716) 873-9753 • www.ngctestingservices.com

NGC 4016037 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date : 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016037

Page 3 of 5

Report Number:

NGC 4016037

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Smooth 1" Thick Foam Units

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: White Foam; Smooth

Panel Core: White Foam

Back Finish: White Foam with four D-40 Spacers attached

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 25.91 mm (1.02 in.), 0.49 kg/m² (0.10 PSF)

Unit Size: Nine Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

Mounting:

9 Units spaced 6 Inches apart in a 3 x 3 arrangement with four D-40 Spacers on backside of

each unit, perimeter of units not sealed.

Total Sample Size:

36 Sq. Ft. (3.369 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016037

Date of test:

7/28/2016

Temp. [°C]:

Humidity [%]: 50

Spec. Size [m2]: 3,369

	Absorption	on Avg. D	ecay Rate	
Control of South	Metric Sab		Specimen	
Frequency	per uni	d (empty)	d (specimen)	
[Hz]		[dB/s]	[dB/s]	
100	0.02	8.97	9.16	
125	0.00	9.43	9.42	
160	0.04	7.62	8.16	
200	0.07	7.75	8.59	
250	0.10	8.22	9.38	
315	0.16	7.28	9.25	
400	0.23	6.94	9.64	
500	0.31	6.93	10.60	
630	0.37	6.47	10.91	
800	0.43	6.26	11.38	
1000	0.45	6.77	12.16	
1250	0.46	7.13	12.66	
1600	0.46	7.67	13.11	
2000	0.43	8.66	13.77	
2500	0.42	9.12	14.10	
3150	0.45	9.10	14.45	
4000	0.45	8.97	14.35	
5000	0.45	8.70	14.11	

Reverberation Room Volume:

282.1

m

NOTE:

Estimates of repeatability and reproducibility for sound absorption of a specimen are referenced in ASTM C423 - 09a test method.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

Test report:

NGC4016037

Date of test:

7/28/2016

Spec. Size [m²]: 3.369 Room Vol.[m³]: 282.1

Temp. [°C]:

23.0

Humidity [%]:

50

Frequency [Hz]	Absorption Metric Sabins per unit
100	0.02
125	0.00
160	0.04
200	0.07
250	0.10
315	0.16
400	0.23
500	0.31
630	0.37
800	0.43
1000	0.45
1250	0.46
1600	0.46
2000	0.43
2500	0.42
3150	0.45
4000	0.45
5000	0.45

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Patterned 1-1/2 Inch Thick 9 Units Arranged in a Three by Three Pattern Each Unit Spaced 6 Inches From Adjacent Unit Each Unit Mounted With D-40 Spacers on the Backside

Report Number: NGC 4016027

Assignment Number: G-1276

Test Date: 06/27/2016

Report Approval Date: 08/15/2016

Submitted by:

Andrew E. Heuer Senior Test Engineer

Reviewed by: _____ Robert J Menchetti

Director

The results reported above apply to specific samples submitted for measurement. No responsibility is assumed for performance of any other specimen. The laboratory's accreditation or any of its test reports in no way constitute or imply product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government. This report may not be reproduced except in full, without written approval of the laboratory.

1650 Military Road • Buffalo, NY 14217-1198 (716) 873-9750 • Fax (716) 873-9753 • www.ngctestingservices.com

NGC 4016027 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date: 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016027

Page 3 of 5

Report Number:

NGC 4016027

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Patterned 1-1/2" Thick Foam Units

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: White Foam; Patterned

Panel Core: White Foam

Back Finish: White Foam

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 38.86 mm (1.53 in.), 0.59 kg/m² (0.12 PSF)

Unit Size: Nine Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

Mounting:

9 Units spaced 6 Inches apart in a 3 x 3 arrangement with four D-40 Spacers on backside of

each unit, perimeter of units not sealed.

Total Sample Size:

36 Sq. Ft. (3.369 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016027

Date of test:

6/27/2016

Temp. [°C]:

22.0

Humidity [%]: 51

Spec. Size [m2]: 3.369

	Absorption	Avg. De	ecay Rate	
	Metric Sabins	Empty	Specimen	
Frequency	per unit	d (empty)	d (specimen)	
[Hz]		[dB/s]	[dB/s]	
100	0.02	9.17	9.47	
125	0.02	9.52	9.76	
160	0.06	7.90	8.67	
200	0.04	8.14	8.61	
250	0.11	8.12	9.38	
315	0.19	7.18	9.45	
400	0.25	6.86	9.86	
500	0.35	6.95	11.17	
630	0.41	6.65	11.59	
800	0.46	6.45	11.96	
1000	0.49	6.82	12.61	
1250	0.49	7.18	13.02	
1600	0.48	7.37	13.08	
2000	0.45	8.01	13.42	
2500	0.45	7.97	13.29	
3150	0.48	7.08	12.75	
4000	0.49	5.56	11.41	
5000	0.47	3 20	8.86	

Reverberation Room Volume:

282.1

 m^{a}

NOTE:

Estimates of repeatability and reproducibility for sound absorption of a specimen are referenced in ASTM C423 - 09a test method

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

Test report: NGC4016027 Date of test: 6/27/2016 Spec. Size [m²]: 3.369 Room Vol.[m³]: 282.1

Temp. [°C]: 22.0 Humidity [%]:

Evenuency	Absorption Metric Sabins		
Frequency	THE RESERVE THE PROPERTY OF THE PARTY OF THE		
[Hz]	per unit		
100	0.02		
125	0.02		
160	0.06		
200	0.04		
250	0.11		
315	0.19		
400	0.25		
500	0.35		
630	0.41		
800	0.46		
1000	0.49		
1250	0.49		
1600	0.48		
2000	0.45		
2500	0.45		
3150	0.48		
4000	0.49		
5000	0.47		

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Smooth 2 Inch Thick Type D-40 Mounting

Report Number:

NGC 4016025

Assignment Number:

G-1276

Test Date:

06/23/2016

Report Approval Date: 08/15/2016

Submitted by:

Andrew E. Heuer

Reviewed by:

Robert J Menchetti

Senior Test Engineer

Director

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

NGC 4016025 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date : 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016025

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 3 of 5

Report Number:

NGC 4016025

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Smooth 2" Thick

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: White Foam

Panel Core: White Foam

Back Finish: White Foam

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 51.82 mm (2.04 in.), 0.98 kg/m² (0.20 PSF)

Unit Size: Sixteen Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

304.8 mm x 609.6 mm (12 in. x 24 in.) Four Units.

Mounting:

Type D-40 as per ASTM E795-05. Perimeter of test specimen sealed.

Total Sample Size:

72.52 Sq. Ft. (6.738 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016025

Date of test:

6/24/2016

Temp. [°C]:

22.0

Humidity [%]: 53

Spec. Size [m2]: 6.739

	Absorption	Avg. De	ecay Rate
Frequency	Coefficients a	Empty d (empty)	Specimen d (specimen)
[Hz]		[dB/s]	[dB/s]
100	0.03	9.44	9.75
125	0.17	9.58	11.13
160	0.35	7.61	10.78
200	0.48	8.03	12.31
250	0.69	8.02	14.21
315	0.96	7.22	15.82
400	1.10	6.90	16.73
500	1.14	6.88	17.04
630	1.11	6.49	16.40
800	1.09	6.26	15.97
1000	1.04	6.72	16.00
1250	0.99	7.09	15.91
1600	1.00	7.62	16.57
2000	1.02	8.57	17.67
2500	1.03	9.24	18.46
3150	1.02	9.13	18.28
4000	1.02	9.03	18.11
5000	1.04	8.72	17.99

Reverberation Room Volume:

282.1

 m^3

Noise Reduction Coefficient NRC:

0.95

Avg. 250, 500, 1000, 2000 Hz

0.972

Sound Absorption Average SAA:

0.97

Avg 200 - 2500 Hz:

0.971

NOTE:

Estimates of repeatability and reproducibility for sound absorption coefficients

of a specimen are referenced in ASTM C423 - 09a test method.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

Test report:

NGC4016025

Date of test:

6/24/2016

Spec. Size [m²]: 6.7387

Room Vol.[m³]: 282.1

22.0

Temp. [°C]:

Humidity [%]:

53

Noise Reduction Coefficient NRC:

0.95

Sound Absorption Average SAA:

0.97

Frequency	Absorption Coefficients		
[Hz]	α,		
100	0.03		
125	0.17		
160	0.35		
200	0.48		
250	0.69		
315	0.96		
400	1.10		
500	1.14		
630	1.11		
800	1.09		
1000	1.04		
1250	0.99		
1600	1.00		
2000	1.02		
2500	1.03		
3150	1.02		
4000	1.02		
5000	1.04		

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Smooth 1-1/2 Inch Thick **Type D-40 Mounting**

Report Number:

Assignment Number: G-1276

Test Date: 06/23/2016

Report Approval Date: 08/15/2016

Submitted by:

NGC 4016023

Andrew E. Heuer Senior Test Engineer

Reviewed by: Robert J Menchetti

Director

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

NGC 4016023 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date : 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016023

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 3 of 5

Report Number:

NGC 4016023

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Smooth 1-1/2" Thick

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: White Foam

Panel Core: White Foam

Back Finish: White Foam

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 38.86 mm (1.53 in.), 0.78 kg/m^2 (0.16 PSF)

Unit Size: Sixteen Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

Four Units, 304.8 mm x 609.6 mm (12 in. x 24 in.)

Mounting:

Type D-40 as per ASTM E795-05. Perimeter of test specimen sealed.

Total Sample Size:

72.52 Sq. Ft. (6.738 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016023

Date of test:

6/23/2016

Temp. [°C]:

22.0

Humidity [%]: 53

Spec. Size [m²]: 6.738

	Absorption	Avg. De	ecay Rate			
	Coefficients	Empty	Specimen			
Frequency	a	d (empty)	d (specimen)			
[Hz]	A Paradote of	[dB/s]	[dB/s]		Statut Markey	
100	0.01	9.44	9.43			
125	0.13	9.58	10.78			
160	0.25	7.61	9.87			
200	0.33	8.03	11.01			
250	0.51	8.02	12.59			
315	0.69	7.22	13.37			
400	0.84	6.90	14.44			
500	1.03	6.88	16.06			
630	1.04	6.49	15.77			
800	1.03	6.26	15.48			
1000	1.00	6.72	15.61			
1250	0.98	7.09	15.82			
1600	0.98	7.62	16.40			
2000	0.96	8.57	17.14			
2500	0.96	9.24	17.79			
3150	0.97	9.13	17.81			
4000	1.00	9.03	17.95			
5000	0.98	8.72	17.50	 		

Reverberation Room Volume:

282.1

 m^B

Noise Reduction Coefficient NRC:

0.85

Avg. 250, 500, 1000, 2000 Hz

0.873

Sound Absorption Average SAA:

0.86

Avg. 200 - 2500 Hz.

0.862

MOTE

Estimates of repeatability and reproducibility for sound absorption coefficients

of a specimen are referenced in ASTM C423 - 09a test method

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

NGC4016023 Test report: Date of test: 6/23/2016 Spec. Size [m²]: 6.738 Room Vol.[m³]: 282.1 22.0

Temp. [°C]: Humidity [%]: 53

Noise Reduction Coefficient NRC: 0.85 Sound Absorption Average SAA: 0.86

Frequency [Hz]	Absorption Coefficients α,		
100	0.01		
125	0.13		
160	0.25		
200	0.33		
250	0.51		
315	0.69		
400	0.84		
500	1.03		
630	1.04		
800	1.03		
1000	1.00		
1250	0.98		
1600	0.98		
2000	0.96		
2500	0.96		
3150	0.97		
4000	1.00		
5000	0.98		

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Smooth 1 Inch Thick **Type D-40 Mounting**

Report Number:

NGC 4016022

Assignment Number:

G-1276

Test Date:

06/23/2016

Report Approval Date: 08/15/2016

Submitted by:

Andrew E. Heuer Senior Test Engineer

Reviewed by:

Robert J Menchetti Director

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

NGC 4016022 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date : 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016022

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 3 of 5

Report Number:

NGC 4016022

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Smooth 1" Thick

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: White Foam

Panel Core: White Foam

Back Finish: White Foam

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 25.91 mm (1.02 in.), 0.49 kg/m² (0.10 PSF)

Unit Size: Sixteen Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

304.8 mm x 609.6 mm (12 in. x 24 in.)

Mounting:

Type D-40 as per ASTM E795-05. Perimeter of test specimen sealed.

Total Sample Size:

72.52 Sq. Ft. (6.738 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016022

Date of test:

6/23/2016

Temp, [°C]:

22.0

Humidity [%]: 53

Spec. Size [m2]: 6.738

	Absorption	Avg. De	Avg. Decay Rate	
	Coefficients	Empty	Specimen	
Frequency	a _s	d (empty)	d (specimen)	
[Hz]		[dB/s]	[dB/s]	
100	0.02	9.44	9.61	
125	0.04	9.58	9.90	
160	0.15	7.61	8.98	
200	0.20	8.03	9.81	
250	0.30	8.02	10.74	
315	0.44	7.22	11.15	
400	0.61	6.90	12.32	
500	0.75	6.88	13.57	
630	0.86	6.49	14.17	
800	0.91	6.26	14.43	
1000	0.92	6.72	14.97	
1250	0.92	7.09	15.31	
1600	0.90	7.62	15.64	
2000	0.90	8.57	16.61	
2500	0.87	9.24	16.98	
3150	0.89	9.13	17.07	
4000	0.93	9.03	17.30	
5000	0.92	8.72	16.96	

Reverberation Room Volume:

282.1

 m^3

Noise Reduction Coefficient NRC:

0.70

Avg. 250, 500, 1000, 2000 Hz :

0.719

Sound Absorption Average SAA:

0.72

Avg. 200 - 2500 Hz:

0.715

NOTE:

Estimates of repeatability and reproducibility for sound absorption coefficients

of a specimen are referenced in ASTM C423 - 09a test method.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

Test report: NGC4016022 6/23/2016 Date of test: Spec. Size [m²]: 6.738 Room Vol.[m³]: 282.1

Temp. [°C]: 22.0 Humidity [%]: 53

0.70 **Noise Reduction Coefficient NRC:** Sound Absorption Average SAA: 0.72

Frequency	Absorption Coefficients		
[Hz]	α_{s}		
100	0.02		
125	0.04		
160	0.15		
200	0.20		
250	0.30		
315	0.44		
400	0.61		
500	0.75		
630	0.86		
800	0.91		
1000	0.92		
1250	0.92		
1600	0.90		
2000	0.90		
2500	0.87		
3150	0.89		
4000	0.93		
5000	0.92		

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Patterned 1-1/2 Inch Thick **Type D-40 Mounting**

Report Number:

NGC 4016024

Assignment Number:

G-1276

Test Date:

06/23/2016

Report Approval Date: 08/15/2016

Submitted by:

Andrew E. Heuer Senior Test Engineer

Reviewed by:

Robert J Menchetti

Director

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

NGC 4016024 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY		
Approval Date : 08/15/2016	Original issue date: 08/15/2016		
	Original NGCTS report: NGC 4016024		

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 3 of 5

Report Number:

NGC 4016024

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Patterned 1-1/2" Thick

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: Patterned White Foam

Panel Core: White Foam

Back Finish: White Foam

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 37.85 mm (1.49 in.), 0.59 kg/m² (0.12 PSF)

Unit Size: Sixteen Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

304.8 mm x 609.6 mm (12 in. x 24 in.) Four Units,

Mounting:

Type D-40 as per ASTM E795-05. Perimeter of test specimen sealed.

Total Sample Size:

72.52 Sq. Ft. (6.738 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016024

Date of test:

6/23/2016

Temp. [°C]:

22.0

Humidity [%]: 53

Spec. Size [m2]: 6.738

	Absorption	Avg. De	ecay Rate
Frequency	Coefficients	Empty d (empty)	Specimen d (specimen)
[Hz]		[dB/s]	[dB/s]
100	0.01	9.44	9.48
125	0.07	9.58	10.23
160	0.18	7.61	9.20
200	0.21	8.03	9.95
250	0.36	8.02	11.24
315	0.53	7.22	11.99
400	0.69	6.90	13.07
500	0.87	6.88	14.61
630	0.94	6.49	14.89
800	0.98	6.26	15.02
1000	0.96	6.72	15.30
1250	0.95	7.09	15.55
1600	0.94	7.62	15.98
2000	0.92	8.57	16.78
2500	0.92	9.24	17.43
3150	0.93	9.13	17.48
4000	0.99	9.03	17.88
5000	0.93	8.72	17.43

Reverberation Room Volume

282.1

 m^3

Noise Reduction Coefficient NRC:

0.80

Avg. 250, 500, 1000, 2000 Hz

0.776

Sound Absorption Average SAA:

0.77

Aya. 200 - 2500 Hz

0.772

NOTE:

Estimates of repeatability and reproducibility for sound absorption coefficients

of a specimen are referenced in ASTM C423 - 09a test method.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

Test report:

NGC4016024

Date of test:

6/23/2016

Spec. Size [m²]: 6.738 Room Vol.[m³]: 282.1

Temp. [°C]:

22.0

53

Humidity [%]:

Noise Reduction Coefficient NRC:

0.80

Sound Absorption Average SAA:

0.77

Frequency [Hz]	Absorption Coefficients α,
100	0.01
125	0.07
160	0.18
200	0.21
250	0.36
315	0.53
400	0.69
500	0.87
630	0.94
800	0.98
1000	0.96
1250	0.95
1600	0.94
2000	0.92
2500	0.92
3150	0.93
4000	0.99
5000	0.98

Acoustical Testing Laboratory

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Smooth 2 Inch Thick **Type A Mounting**

Report Number:

NGC 4016021

Assignment Number:

G-1276

Test Date:

06/23/2016

Report Approval Date: 08/15/2016

Submitted by:

Andrew E. Heuer Senior Test Engineer

Reviewed by:

Robert J Menchetti

Director

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

NGC 4016021 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date: 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016021

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 3 of 5

Report Number:

NGC 4016021

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Smooth 2" Thick

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: White Foam

Panel Core: White Foam

Back Finish: White Foam

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 51.82 mm (2.04 in.), 0.98 kg/m² (0.20 PSF)

Unit Size: Sixteen Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

304.8 mm x 609.6 mm (12 in. x 24 in.) Four Units.

Mounting:

Type A as per ASTM E795-05. Perimeter of test specimen sealed.

Total Sample Size:

72.52 Sq. Ft. (6.738 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016021

Date of test:

6/23/2016

Temp. [°C]:

22.0

Humidity [%]: 53

Spec. Size [m2]: 6.738

	Absorption	Avg. De	cay Rate
	Coefficients	Empty	Specimen
Frequency	a _s	d (empty)	d (specimen)
[Hz]		[dB/s]	[dB/s]
100	0.08	9.44	10.16
125	0.11	9.58	10.59
160	0.26	7.61	9.95
200	0.35	8.03	11.15
250	0.56	8.02	13.01
315	0.78	7.22	14.17
400	0.95	6.90	15.40
500	1.01	6.88	15.93
630	1.04	6.49	15.77
800	1.04	6.26	15.52
1000	1.00	6.72	15.68
1250	0.98	7.09	15.84
1600	0.98	7.62	16.36
2000	0.99	8.57	17.40
2500	0.98	9.24	18.00
3150	0.96	9.13	17.71
4000	0.97	9.03	17.71
5000	1.02	8.72	17.82

Reverberation Room Volume:

282.1

 m^3

Noise Reduction Coefficient NRC:

0.90

Avg. 250, 500, 1000, 2000 Hz

0.891

Sound Absorption Average SAA:

0.89

Avg. 200 - 2500 Hz

888.0

NOTE:

Estimates of repeatability and reproducibility for sound absorption coefficients

of a specimen are referenced in ASTM C423 - 09a test method

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

Test report:

NGC4016021

Date of test:

6/23/2016

Spec. Size [m²]: 6.738

Room Vol.[m³]: 282.1

22.0

Temp. [°C]:

53

Humidity [%]:

0.90

Noise Reduction Coefficient NRC: Sound Absorption Average SAA:

0.89

Frequency	Absorption Coefficients
[Hz]	α _s
100	0.08
125	0.11
160	0.26
200	0.35
250	0.56
315	0.78
400	0.95
500	1.01
630	1.04
800	1.04
1000	1.00
1250	0.98
1600	0.98
2000	0.99
2500	0.98
3150	0.96
4000	0.97
5000	1.02

Acoustical Testing Laboratory

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Smooth 1-1/2 Inch Thick **Type A Mounting**

Report Number:

NGC 4016019

Assignment Number:

G-1276

Test Date:

06/23/2016

Report Approval Date: 08/15/2016

Submitted by:

Andrew E. Heuer Senior Test Engineer

Reviewed by:

Robert J Menchetti

Director

Acoustical Testing Laboratory

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

NGC 4016019 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date: 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016019

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 3 of 5

Report Number:

NGC 4016019

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Smooth 1-1/2" Thick

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: White Foam

Panel Core: White Foam

Back Finish: White Foam

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 38.86 mm (1.53 in.), 0.78 kg/m² (0.16 PSF)

Unit Size: Sixteen Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

304.8 mm x 609.6 mm (12 in. x 24 in.) Four Units.

Mounting:

Type A as per ASTM E795-05. Perimeter of test specimen sealed.

Total Sample Size:

72.52 Sq. Ft. (6.738 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016019

Date of test:

6/23/2016

Temp. [°C]:

Humidity [%]: 53

Spec. Size [m2]: 6.738

	A STATE OF	Absorption	Avg. De	cay Rate
Frequency		Coefficients a _s	Empty d (empty)	Specimen d (specimen)
[Hz]			[dB/s]	[dB/s]
100		0.12	9.44	10.51
125	2	0.13	9.58	10.72
160		0.17	7.61	9.15
200		0.22	8.03	10.00
250		0.36	8.02	11.26
315		0.50	7.22	11.68
400		0.66	6.90	12.83
500		0.84	6.88	14.35
630		0.86	6.49	14.19
800		0.92	6.26	14.49
1000		0.92	6.72	14.98
1250		0.94	7.09	15.47
1600		0.91	7.62	15.74
2000		0.92	8.57	16.76
2500		0.93	9.24	17.56
3150		0.93	9.13	17.43
4000		0.94	9.03	17.41
5000		0.94	8.72	17.10

Reverberation Room Volume:

282.1

 m^3

Noise Reduction Coefficient NRC:

0.75

Avg. 250, 500, 1000, 2000 Hz

0.760

Sound Absorption Average SAA:

0.75

Avg. 200 - 2500 Hz:

0.749

NOTE

Estimates of repeatability and reproducibility for sound absorption coefficients

of a specimen are referenced in ASTM C423 - 09a test method.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

Test report:

NGC4016019

Date of test:

6/23/2016

Room Vol.[m³]: 282.1

Spec. Size [m²]: 6.738

Temp. [°C]:

22.0

Humidity [%]:

53

Noise Reduction Coefficient NRC:

0.75

Sound Absorption Average SAA:

0.75

Frequency [Hz]	Absorption Coefficients
100	0.12
125	0.13
160	0.17
200	0.22
250	0.36
315	0.50
400	0.66
500	0.84
630	0.86
800	0.92
1000	0.92
1250	0.94
1600	0.91
2000	0.92
2500	0.93
3150	0.93
4000	0.94
5000	0.94

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Smooth 1 Inch Thick Type A Mounting

Report Number:	NGC 4016018
Assignment Number:	G-1276
Test Date:	06/23/2016
Report Approval Date:	08/15/2016
	E. Heuer lest Engineer
Reviewed by:	Menchetti
Novert J	4/

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

NGC 4016018 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date : 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016018

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 3 of 5

Report Number:

NGC 4016018

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Smooth 1" Thick

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: White Foam

Panel Core: White Foam

Back Finish: White Foam

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 25.91 mm (1.02 in.), 0.49 kg/m² (0.10 PSF)

Unit Size: Sixteen Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

304.8 mm x 609.6 mm (12 in. x 24 in.) Four Units,

Type A as per ASTM E795-05. Perimeter of test specimen sealed. Mounting:

72.52 Sq. Ft. (6.738 m²) Total Sample Size:

Minimum 24 hours at 70°F, 55% R.H Preconditioning:

Test Results: The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016018

Date of test:

6/23/2016

Temp. [°C]:

Humidity [%]: 53

Spec. Size [m2]: 6.738

	Absorption	Avg. De	ecay Rate		
	Coefficients	Empty	Specimen		
Frequency	a	d (empty)	d (specimen)		
[Hz]		[dB/s]	[dB/s]	tine"	a distant
100	0.02	9.44	9.62		
125	0.07	9.58	10.21		
160	0.11	7.61	8.57		
200	0.14	8.03	9.28		
250	0.22	8.02	9.95		
315	0.31	7.22	9.98		
400	0.45	6.90	10.93		
500	0.54	6.88	11.73		
630	0.66	6.49	12.43		
800	0.74	6.26	12.84		
1000	0.78	6.72	13.70		
1250	0.81	7.09	14.35		
1600	0.83	7.62	15.04		
2000	0.85	8.57	16.17		
2500	0.85	9.24	16.87		
3150	0.87	9.13	16.89		
4000	0.87	9.03	16.79		
5000	0.91	8.72	16.85		

Reverberation Room Volume:

282.1

m3

Noise Reduction Coefficient NRC:

0.60

Avg. 250, 500, 1000, 2000 Hz :

0.598

Sound Absorption Average SAA:

0.60

Avg. 200 - 2500 Hz.

0.599

NOTE

Estimates of repeatability and reproducibility for sound absorption coefficients

of a specimen are referenced in ASTM C423 - 09a test method.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

Test report: NGC4016018 Date of test: 6/23/2016 Spec. Size [m²]: 6.738 Room Vol.[m³]: 282.1

Temp. [°C]: 22.0 Humidity [%]: 53

Noise Reduction Coefficient NRC: 0.60 0.60 Sound Absorption Average SAA:

Frequency [Hz]	Absorption Coefficients α,		
100	0.02		
125	0.07		
160	0.11		
200	0.14		
250	0.22		
315	0.31		
400	0.45		
500	0.54		
630	0.66		
800	0.74		
1000	0.78		
1250	0.81		
1600	0.83		
2000	0.85		
2500	0.85		
3150	0.87		
4000	0.87		
5000	0.91		

Acoustical Testing Laboratory

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 1 of 5

TEST REPORT

for

STC Architectural Products

1200 Northland Ave. Buffalo, NY 14215 Paul L. Battaglia / 716-392-3831

Sound Absorption Testing

ASTM C 423-09a/ E795-05

On

Patterned 1-1/2 Inch Thick Type A Mounting

Report Number: NGC 4016020

Assignment Number: G-1276

Test Date: 06/23/2016

Report Approval Date: 08/15/2016

Submitted by: Andrew E. Heuer Senior Test Engineer

Reviewed by:

Robert J Menchetti Director

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

> NGC 4016020 STC Architectural Products 08/15/2016 Page 2 of 5

Revision Summary:

Date	SUMMARY
Approval Date : 08/15/2016	Original issue date: 08/15/2016
	Original NGCTS report: NGC 4016020

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Page 3 of 5

Report Number:

NGC 4016020

Test Method:

This test method conforms explicitly with the American Society for Testing and Materials Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the

Reverberation Room Method - Designation: C 423-09a / E795-05.

For the test, a Linear Averaging Mode is used as the Averaging Algorithm when measuring the

Decay Times.

Specimen Description:

Designated by client as: Patterned 1-1/2" Thick

The test specimens were observed to have the following characteristics:

Panels are: Square edge.

Face Finish: Patterned White Foam

Panel Core: White Foam

Back Finish: White Foam

All weights and dimension are averaged:

Measued dimensions: Various sizes, see below

Overall Thickness and weight: 37.85 mm (1.49 in.), 0.59 kg/m² (0.12 PSF)

Unit Size: Sixteen Units, 609.6 mm x 609.6 mm (24 in. x 24 in.)

Four Units, 304.8 mm x 609.6 mm (12 in. x 24 in.)

Mounting:

Type A as per ASTM E795-05. Perimeter of test specimen sealed.

Total Sample Size:

72.52 Sq. Ft. (6.738 m²)

Preconditioning:

Minimum 24 hours at 70°F, 55% R.H

Test Results:

The results of the tests are given on pages 4 and 5 of the report.

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 4 of 5

No. of test report:

NGC4016020

Date of test:

6/23/2016

Temp. [°C]:

Humidity [%]: 53

Spec. Size [m2]: 6.738

	Absorption	Avg. De	ecay Rate
	Coefficients	Empty	Specimen
Frequency	a,	d (empty)	d (specimen)
[Hz]		[dB/s]	[dB/s]
100	0.04	9.44	9.84
125	80.0	9.58	10.30
160	0.16	7.61	9.00
200	0.16	8.03	9.45
250	0.25	8.02	10.24
315	0.37	7.22	10,55
400	0.51	6.90	11.42
500	0.67	6.88	12.87
630	0.76	6.49	13.32
800	0.81	6.26	13.47
1000	0.84	6.72	14.20
1250	0.85	7.09	14.68
1600	0.86	7.62	15.30
2000	0.86	8.57	16.21
2500	0.88	9.24	17.08
3150	0.88	9.13	17.01
4000	0.90	9.03	17.11
5000	0.94	8.72	17.14

Reverberation Room Volume:

282.1

 m^3

Noise Reduction Coefficient NRC:

0.65

Avg. 250, 500, 1000, 2000 Hz

0.653

Sound Absorption Average SAA:

0.65

Avg. 200 - 2500 Hz:

0.651

NOTE:

Estimates of repeatability and reproducibility for sound absorption coefficients

of a specimen are referenced in ASTM C423 - 09a test method

Accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 200291

Sound Absorption Test Data per C423 - 09a

Page 5 of 5

NGC4016020 Test report: 6/23/2016 Date of test: Spec. Size [m²]: 6.738 Room Vol.[m³]: 282.1 Temp. [°C]: 22.0

53

Humidity [%]:

Noise Reduction Coefficient NRC: 0.65 Sound Absorption Average SAA: 0.65

Frequency [Hz]	Absorption Coefficients α,		
100	0.04		
125	0.08		
160	0.16		
200	0.16		
250	0.25		
315	0.37		
400	0.51		
500	0.67		
630	0.76		
800	0.81		
1000	0.84		
1250	0.85		
1600	0.86		
2000	0.86		
2500	0.88		
3150	0.88		
4000	0.90		
5000	0.94		

